The Atmospheric Response to Projected Terrestrial Snow Changes in the Late Twenty-First Century

نویسندگان

  • MICHAEL A. ALEXANDER
  • ROBERT TOMAS
  • CLARA DESER
  • DAVID M. LAWRENCE
چکیده

Two atmospheric general circulation model experiments are conducted with specified terrestrial snow conditions representative of 1980–99 and 2080–99. The snow states are obtained from twentieth-century and twenty-first-century coupled climate model integrations under increasing greenhouse gas concentrations. Sea surface temperatures, sea ice, and greenhouse gas concentrations are set to 1980–99 values in both atmospheric model experiments to isolate the effect of the snow changes. The reduction in snow cover in the twenty-first century relative to the twentieth century increases the solar radiation absorbed by the surface, and it enhances the upward longwave radiation and latent and sensible fluxes that warm the overlying atmosphere. The maximum twenty-first-century minus twentieth-century surface air temperature (SAT) differences are relatively small (,38C) compared with those due to Arctic sea ice changes (;108C). However, they are continental in scale and are largest in fall and spring, when they make a significant contribution to the overall warming over Eurasia and North America in the twenty-first century. The circulation response to the snow changes, while of modest amplitude, involves multiple components, including a local low-level trough, remote Rossby wave trains, an annular pattern that is strongest in the stratosphere, and a hemispheric increase in geopotential height.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Seasonal Atmospheric Response to Projected Arctic Sea Ice Loss in the Late Twenty-First Century

The authors investigate the atmospheric response to projected Arctic sea ice loss at the end of the twentyfirst century using an atmospheric general circulation model (GCM) coupled to a land surface model. The response was obtained from two 60-yr integrations: one with a repeating seasonal cycle of specified sea ice conditions for the late twentieth century (1980–99) and one with that of sea ic...

متن کامل

Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties a...

متن کامل

Future Changes in Northern Hemisphere Snowfall

Using simulations performed with 18 coupled atmosphere–ocean global climatemodels from phase 5 of the Coupled Model Intercomparison Project (CMIP5), projections of the Northern Hemisphere snowfall under the representative concentration pathway (RCP4.5) scenario are analyzed for the period 2006–2100. These models perform well in simulating twentieth-century snowfall, although there is a positive...

متن کامل

Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003–2100

[1] In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003–2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1) vegetation changes followi...

متن کامل

Complex Spatiotemporal Responses of Global Terrestrial Primary Production to Climate Change and Increasing Atmospheric CO2 in the 21st Century

Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010